Перевод: с английского на все языки

со всех языков на английский

His' canal

  • 1 His' canal

    s.
    conducto de His.

    Nuevo Diccionario Inglés-Español > His' canal

  • 2 His' canal

    Универсальный англо-русский словарь > His' canal

  • 3 His' canal

    щитовидно-язычный проток, канал Гиса
    * * *

    English-russian biological dictionary > His' canal

  • 4 canal

    English-russian biological dictionary > canal

  • 5 His's canal

    Универсальный англо-русский словарь > His's canal

  • 6 His's canal

    мед.фраз. щитовидно-язычный проток

    Англо-русский медицинский словарь > His's canal

  • 7 His's canal

    قَناةُ هِيس

    English-Arabic Medical Dictionary > His's canal

  • 8 Brindley, James

    SUBJECT AREA: Canals
    [br]
    b. 1716 Tunstead, Derbyshire, England
    d. 27 September 1772 Turnhurst, Staffordshire, England
    [br]
    English canal engineer.
    [br]
    Born in a remote area and with no material advantages, Brindley followed casual rural labouring occupations until 1733, when he became apprenticed to Abraham Bennett of Macclesfield, a wheelwright and millwright. Though lacking basic education in reading and writing, he demonstrated his ability, partly through his photographic memory, to solve practical problems. This established his reputation, and after Bennett's death in 1742 he set up his own business at Leek as a millwright. His skill led to an invitation to solve the problem of mine drainage at Wet Earth Colliery, Clifton, near Manchester. He tunnelled 600 ft (183 m) through rock to provide a leat for driving a water-powered pump.
    Following work done on a pump on Earl Gower's estate at Trentham, Brindley's name was suggested as the engineer for the proposed canal for which the Duke of Bridge water (Francis Egerton) had obtained an Act in 1759. The Earl and the Duke were brothers-in-law, and the agents for the two estates were, in turn, the Gilbert brothers. The canal, later known as the Bridgewater Canal, was to be constructed to carry coal from the Duke's mines at Worsley into Manchester. Brindley advised on the details of its construction and recommended that it be carried across the river Irwell at Barton by means of an aqueduct. His proposals were accepted, and under his supervision the canal was constructed on a single level and opened in 1761. Brindley had also surveyed for Earl Gower a canal from the Potteries to Liverpool to carry pottery for export, and the signal success of the Bridgewater Canal ensured that the Trent and Mersey Canal would also be built. These undertakings were the start of Brindley's career as a canal engineer, and it was largely from his concepts that the canal system of the Midlands developed, following the natural contours rather than making cuttings and constructing large embankments. His canals are thus winding navigations unlike the later straight waterways, which were much easier to traverse. He also adopted the 7 ft (2.13 m) wide lock as a ruling dimension for all engineering features. For cheapness, he formed his canal tunnels without a towpath, which led to the notorious practice of legging the boats through the tunnels.
    Brindley surveyed a large number of projects and such was his reputation that virtually every proposal was submitted to him for his opinion. Included among these projects were the Staffordshire and Worcestershire, the Rochdale, the Birmingham network, the Droitwich, the Coventry and the Oxford canals. Although he was nominally in charge of each contract, much of the work was carried out by his assistants while he rushed from one undertaking to another to ensure that his orders were being carried out. He was nearly 50 when he married Anne Henshall, whose brother was also a canal engineer. His fees and salaries had made him very wealthy. He died in 1772 from a chill sustained when carrying out a survey of the Caldon Canal.
    [br]
    Further Reading
    A.G.Banks and R.B.Schofield, 1968, Brindley at Wet Earth Colliery: An Engineering Study, Newton Abbot: David \& Charles.
    S.E.Buckley, 1948, James Brindley, London: Harrap.
    JHB

    Biographical history of technology > Brindley, James

  • 9 Rennie, John

    SUBJECT AREA: Canals, Civil engineering
    [br]
    b. 7 June 1761 Phantassie, East Linton, East Lothian, Scotland
    d. 4 October 1821 Stamford Street, London, England
    [br]
    Scottish civil engineer.
    [br]
    Born into a prosperous farming family, he early demonstrated his natural mechanical and structural aptitude. As a boy he spent a great deal of time, often as a truant, near his home in the workshop of Andrew Meikle. Meikle was a millwright and the inventor of a threshing machine. After local education and an apprenticeship with Meikle, Rennie went to Edinburgh University until he was 22. He then travelled south and met James Watt, who in 1784 offered him the post of Engineer at the Albion Flour Mills, London, which was then under construction. Rennie designed all the mill machinery, and it was while there that he began to develop an interest in canals, opening his own business in 1791 in Blackfriars. He carried out work on the Kennet and Avon Canal and in 1794 became Engineer for the company. He meanwhile carried out other surveys, including a proposed extension of the River Stort Navigation to the Little Ouse and a Basingstoke-to-Salisbury canal, neither of which were built. From 1791 he was also engaged on the Rochdale Canal and the Lancaster Canal, as well as the great masonry aqueduct carrying the latter canal across the river Lune at Lancaster. He also surveyed the Ipswich and Stowmarket and the Chelmer and Blackwater Navigations. He advised on the Horncastle Canal in 1799 and on the River Ancholme in 1799, both of which are in Lincolnshire. In 1802 he was engaged on the Royal Canal in Ireland, and in the same year he was commissioned by the Government to prepare a plan for flooding the Lea Valley as a defence on the eastern approach to London in case Napoleon invaded England across the Essex marshes. In 1809 he surveyed improvements on the Thames, and in the following year he was involved in a proposed canal from Taunton to Bristol. Some of his schemes, particularly in the Fens and Lincolnshire, were a combination of improvements for both drainage and navigation. Apart from his canal work he engaged extensively in the construction and development of docks and harbours including the East and West India Docks in London, Holyhead, Hull, Ramsgate and the dockyards at Chatham and Sheerness. In 1806 he proposed the great breakwater at Plymouth, where work commenced on 22 June 1811.
    He was also highly regarded for his bridge construction. These included Kelso and Musselburgh, as well as his famous Thames bridges: London Bridge (uncompleted at the time of his death), Waterloo Bridge (1810–17) and Southwark Bridge (1815–19). He was elected a Fellow of the Royal Society in 1798.
    [br]
    Principal Honours and Distinctions
    FRS 1798.
    Further Reading
    C.T.G.Boucher, 1963, John Rennie 1761–1821, Manchester University Press. W.Reyburn, 1972, Bridge Across the Atlantic, London: Harrap.
    JHB

    Biographical history of technology > Rennie, John

  • 10 Giles, Francis

    [br]
    b. 1787 England
    d. 4 March 1847 England
    [br]
    English civil engineer engaged in canal, harbour and railway construction.
    [br]
    Trained as a surveyor in John Rennie's organization, Giles carried out surveys on behalf of Rennie before setting up in practice on his own. His earliest survey seems to have been on the line of the proposed Weald of Kent Canal in 1809. Then in 1811 he surveyed the proposed London \& Cambridge Canal linking Bishops Stortford on the Stort with Cambridge and with a branch to Shefford on the Ivel. In the same year he surveyed the line of the Wey \& Arun Junction Canal, and in 1816, in the same area, the Portsmouth \& Arundel Canal. In 1819 he carried out what is regarded as his first independent commission—the extension of the River Ivel Navigation from Biggleswade to Shefford. At this time he was helping John Rennie on the Aire \& Calder Navigation and continued there after Rennie's death in 1821. In 1825 he was engaged on plans for a London to Portsmouth Ship Canal and also on a suggested link between the Basingstoke and Kennet \& Avon Canals. Later, on behalf of Sir George Duckett, he was Engineer to the Hertford Union Canal, which was completed in 1830, and linked the Regent's Canal to the Lee Navigation. In 1833 he completed the extension of the Sankey Brook Navigation from Fiddler's Ferry to the Mersey at Widnes. One of his last canal works was a survey of the River Lee in 1844. Apart from his canal work, he was appointed Engineer to the Newcastle \& Carlisle Railway in 1829 and designed, among other works, the fine viaducts at Wetheral and Cor by. He was also, for a very short time, Engineer to the London \& Southampton Railway. Among other commissions, he was involved in harbour surveys and works at Dover, Rye, Holyhead, Dundee, Bridport and Dun Laoghaire (Kingstown). He was elected a member of the Institution of Civil Engineers in 1842 and succeeded Telford on the Exchequer Bill Loans Board.
    [br]
    Further Reading
    1848, Memoir 17, London: Institution of Civil Engineers, 9.
    JHB

    Biographical history of technology > Giles, Francis

  • 11 Roebling, John Augustus

    SUBJECT AREA: Civil engineering
    [br]
    b. 12 July 1806 Muhlhausen, Prussia
    d. 22 July 1869 Brooklyn, New York, USA
    [br]
    German/American bridge engineer and builder.
    [br]
    The son of Polycarp Roebling, a tobacconist, he studied mathematics at Dr Unger's Pedagogium in Erfurt and went on to the Royal Polytechnic Institute in Berlin, from which he graduated in 1826 with honours in civil engineering. He spent the next three years working for the Prussian government on the construction of roads and bridges. With his brother and a group of friends, he emigrated to the United States, sailing from Bremen on 23 May 1831 and docking in Philadelphia eleven weeks later. They bought 7,000 acres (2,800 hectares) in Butler County, western Pennsylvania, and established a village, at first called Germania but later known as Saxonburg. Roebling gave up trying to establish himself as a farmer and found work for the state of Pennsylvania as Assistant Engineer on the Beaver River canal and others, then surveying a railroad route across the Allegheny Mountains. During his canal work, he noted the failings of the hemp ropes that were in use at that time, and recalled having read of wire ropes in a German journal; he built a rope-walk at his Saxonburg farm, bought a supply of iron wire and trained local labour in the method of wire twisting.
    At this time, many canals crossed rivers by means of aqueducts. In 1844, the Pennsylvania Canal aqueduct across the Allegheny River was due to be renewed, having become unsafe. Roebling made proposals which were accepted by the canal company: seven wooden spans of 162 ft (49 m) each were supported on either side by a 7 in. (18 cm) diameter cable, Roebling himself having to devise all the machinery required for the erection. He subsequently built four more suspension aqueducts, one of which was converted to a toll bridge and was still in use a century later.
    In 1849 he moved to Trenton, New Jersey, where he set up a new wire rope plant. In 1851 he started the construction (completed in 1855) of an 821 ft (250 m) long suspension railroad bridge across the Niagara River, 245 ft (75 m) above the rapids; each cable consisted of 3,640 wrought iron wires. A lower deck carried road traffic. He also constructed a bridge across the Ohio River between Cincinnati and Covington, a task which was much protracted due to the Civil War; this bridge was finally completed in 1866.
    Roebling's crowning achievement was to have been the design and construction of the bridge over the Hudson River between Brooklyn and Staten Island, New York, but he did not live to see its completion. It had a span of 1,595 ft (486 m), designed to bear a load of 18,700 tons (19,000 tonnes) with a headroom of 135 ft (41 m). The work of building had barely started when, at the Brooklyn wharf, a boat crushed Roebling's foot against the timbering and he died of tetanus three weeks later. His son, Washington Augustus Roebling, then took charge of this great work.
    [br]
    Further Reading
    D.B.Steinman and S.R.Watson, 1941, Bridges and their Builders, New York: Dover Books.
    D.McCullough, 1982, The Great Bridge: The Epic Story of the Building of the Brooklyn Bridge, New York: Simon \& Schuster.
    IMcN

    Biographical history of technology > Roebling, John Augustus

  • 12 Egerton, Francis, 3rd Duke of Bridgewater

    SUBJECT AREA: Ports and shipping
    [br]
    b. 21 May 1736
    d. 9 March 1803 London, England
    [br]
    English entrepreneur, described as the "father of British inland navigation".
    [br]
    Francis Egerton was the younger of the two surviving sons of Scroop, 1st Duke of Bridgewater, and on the death of his brother, the 2nd Duke, he succeeded to the title in 1748. Until that time he had received little or no education as his mother considered him to be of feeble intellect. His guardians, the Duke of Bedford and Lord Trentham, decided he should be given an opportunity and sent him to Eton in 1749. He remained there for three years and then went on the "grand tour" of Europe. During this period he saw the Canal du Midi, though whether this was the spark that ignited his interest in canals is hard to say. On his return to England he indulged in the social round in London and raced at Newmarket. After two unsuccessful attempts at marriage he retired to Lancashire to further his mining interests at Worsley, where the construction of a canal to Manchester was already being considered. In fact, the Act for the Bridgewater Canal had been passed at the time he left London. John Gilbert, his land agent at Worsley, encouraged the Duke to pursue the canal project, which had received parliamentary approval in March 1759. Brindley had been recommended on account of his work at Trentham, the estate of the Duke's brother-in-law, and Brindley was consulted and subsequently appointed Engineer; the canal opened on 17 July 1761. This was immediately followed by an extension project from Longford Brook to Runcorn to improve communications between Manchester and Liverpool; this was completed on 31 December 1772, after Brindley's death. The Duke also invested heavily in the Trent \& Mersey Canal, but his interests were confined to his mines and the completed canals for the rest of his life.
    It is said that he lacked a sense of humour and even refused to read books. He was untidy in his dress and habits yet he was devoted to the Worsley undertakings. When travelling to Worsley he would have his coach placed on a barge so that he could inspect the canal during the journey. He amassed a great fortune from his various activities, but when he died, instead of leaving his beloved canal to the beneficiaries under his will, he created a trust to ensure that the canal would endure; the trust did not expire until 1903. The Duke is commemorated by a large Corinthian pillar, which is now in the care of the National Trust, in the grounds of his mansion at Ashridge, Hertfordshire.
    [br]
    Further Reading
    H.Malet, 1961, The Canal Duke, Dawlish: David \& Charles.
    JHB

    Biographical history of technology > Egerton, Francis, 3rd Duke of Bridgewater

  • 13 Jessop, William

    [br]
    b. 23 January 1745 Plymouth, England
    d. 18 November 1814
    [br]
    English engineer engaged in river, canal and dock construction.
    [br]
    William Jessop inherited from his father a natural ability in engineering, and because of his father's association with John Smeaton in the construction of Eddystone Lighthouse he was accepted by Smeaton as a pupil in 1759 at the age of 14. Smeaton was so impressed with his ability that Jessop was retained as an assistant after completion of his pupilage in 1767. As such he carried out field-work, making surveys on his own, but in 1772 he was recommended to the Aire and Calder Committee as an independent engineer and his first personally prepared report was made on the Haddlesey Cut, Selby Canal. It was in this report that he gave his first evidence before a Parliamentary Committee. He later became Resident Engineer on the Selby Canal, and soon after he was elected to the Smeatonian Society of Engineers, of which he later became Secretary for twenty years. Meanwhile he accompanied Smeaton to Ireland to advise on the Grand Canal, ultimately becoming Consulting Engineer until 1802, and was responsible for Ringsend Docks, which connected the canal to the Liffey and were opened in 1796. From 1783 to 1787 he advised on improvements to the River Trent, and his ability was so recognized that it made his reputation. From then on he was consulted on the Cromford Canal (1789–93), the Leicester Navigation (1791–4) and the Grantham Canal (1793–7); at the same time he was Chief Engineer of the Grand Junction Canal from 1793 to 1797 and then Consulting Engineer until 1805. He also engineered the Barnsley and Rochdale Canals. In fact, there were few canals during this period on which he was not consulted. It has now been established that Jessop carried the responsibility for the Pont-Cysyllte Aqueduct in Wales and also prepared the estimates for the Caledonian Canal in 1804. In 1792 he became a partner in the Butterley ironworks and thus became interested in railways. He proposed the Surrey Iron Railway in 1799 and prepared for the estimates; the line was built and opened in 1805. He was also the Engineer for the 10 mile (16 km) long Kilmarnock \& Troon Railway, the Act for which was obtained in 1808 and was the first Act for a public railway in Scotland. Jessop's advice was sought on drainage works between 1785 and 1802 in the lowlands of the Isle of Axholme, Holderness, the Norfolk Marshlands, and the Axe and Brue area of the Somerset Levels. He was also consulted on harbour and dock improvements. These included Hull (1793), Portsmouth (1796), Folkestone (1806) and Sunderland (1807), but his greatest dock works were the West India Docks in London and the Floating Harbour at Bristol. He was Consulting Engineer to the City of London Corporation from 1796to 1799, drawing up plans for docks on the Isle of Dogs in 1796; in February 1800 he was appointed Engineer, and three years later, in September 1803, he was appointed Engineer to the Bristol Floating Harbour. Jessop was regarded as the leading civil engineer in the country from 1785 until 1806. He died following a stroke in 1814.
    [br]
    Further Reading
    C.Hadfield and A.W.Skempton, 1979, William Jessop. Engineer, Newton Abbot: David \& Charles.
    JHB

    Biographical history of technology > Jessop, William

  • 14 Lesseps, Ferdinand de

    SUBJECT AREA: Canals
    [br]
    b. 19 November 1805 Versailles, France
    d. 7 December 1894 La Chesnaye, near Paris, France
    [br]
    French diplomat and canal entrepreneur.
    [br]
    Ferdinand de Lesseps was born into a family in the diplomatic service and it was intended that his should be his career also. He was educated at the Lycée Napoléon in Paris. In 1825, aged 20, he was appointed an attaché to the French consulate in Lisbon. In 1828 he went to the Consulate-General in Tunis and in 1831 was posted from there to Egypt, becoming French Consul in Cairo two years later. For his work there during the plague in 1836 he was awarded the Croix de Chevalier in the Légion d'honneur. During this time he became very friendly with Said Mohammed and the friendship was maintained over the years, although there were no expectations then that Said would occupy any great position of authority.
    De Lesseps then served in other countries. In 1841 he had thought about a canal from the Mediterranean to the Red Sea, and he brooded over the idea until 1854. In October of that year, having retired from the diplomatic service, he returned to Egypt privately. His friend Said became Viceroy and he readily agreed to the proposal to cut the canal. At first there was great international opposition to the idea, and in 1855 de Lesseps travelled to England to try to raise capital. Work finally started in 1859, but there were further delays following the death of Said Pasha in 1863. The work was completed in 1869 and the canal was formally opened by the Empress Eugenic on 20 November 1869. De Lesseps was fêted in France and awarded the Grand Croix de la Légion d'honneur.
    He subsequently promoted the project of the Corinth Canal, but his great ambition in his later years was to construct a canal across the Isthmus of Panama. This idea had been conceived by Spanish adventurers in 1514, but everyone felt the problems and cost would be too great. De Lesseps, riding high in popularity and with his charismatic character, convinced the public of the scheme's feasibility and was able to raise vast sums for the enterprise. He proposed a sea-level canal, which required the excavation of a 350 ft (107 m) cut through terrain; this eventually proved impossible, but work nevertheless started in 1881.
    In 1882 de Lesseps became first President d'-Honneur of the Syndicat des Entrepreneurs de Travaux Publics de France and was elected to the Chair of the French Academy in 1884. By 1891 the Panama Canal was in a disastrous financial crisis: a new company was formed, and because of the vast sums expended a financial investigation was made. The report led to de Lesseps, his son and several high-ranking government ministers and officials being charged with bribery and corruption, but de Lesseps was a very sick man and never appeared at the trial. He was never convicted, although others were, and he died soon after, at the age of 89, at his home.
    [br]
    Principal Honours and Distinctions
    Croix de Chevalier de la Légion d'honneur 1836; Grand Croix 1869.
    Further Reading
    John S.Pudney, 1968, Suez. De Lesseps' Canal, London: Dent.
    John Marlowe, 1964, The Making of the Suez Canal, London: Cresset.
    JHB

    Biographical history of technology > Lesseps, Ferdinand de

  • 15 Berry, Henry

    SUBJECT AREA: Canals, Ports and shipping
    [br]
    b. 1720 Parr (?), near St Helens, Lancashire, England
    d. 30 July 1812 Liverpool, England
    [br]
    English canal and dock engineer who was responsible for the first true canal, as distinct from a canalized river, in England.
    [br]
    Little is known of Berry's early life, but it is certain that he knew the district around St Helens intimately, which was of assistance to him in his later canal works. He became Clerk and Assistant to Thomas Steers and proved his natural engineering ability in helping Steers in both the construction of the Newry navigation in Ireland and his supervision of the construction of Salthouse Dock in Liverpool. On Steers's death in 1750 Berry was appointed, at the age of 30, Dock Engineer for Liverpool Docks, and completed the Salthouse Dock three years later. In 1755 he was allowed by the Liverpool Authority—presumably because his full-time service was not required at the docks at that time—to survey and construct the Sankey Brook Navigation (otherwise known as the St Helens Canal), which was completed in 1757. Berry was instructed to make the brook navigable, but with the secret consent and connivance of one of the proprietors he built a lateral canal, the work commencing on 5 September 1755. This was the first dead-water canal in the country, as distinct from an improved river navigation, and preceded Brindley's Bridgewater Canal by some five or six years. On the canal he also constructed at Blackbrook the first pair of staircase locks to be built in England.
    Berry later advised on improvements to the Weaver Navigation, and his design for the new locks was accepted. He also carried out in 1769 a survey for a Leeds and Liverpool Canal, but this was not proceeded with and it was left to others to construct this canal. He advised turnpike trustees on bridge construction, but his main work was in Liverpool dock construction and between 1767 and 1771 he built the George's Dock. His final dock work was King's Dock, which was opened on 3 October 1788; he resigned at the age of 68 when the dock was completed. He lived for another 24 years, during which he was described in the local directories as "gentleman" instead of "engineer" or "surveyor" as he had been previously.
    [br]
    Further Reading
    S.A.Harris, 1937, "Liverpool's second dock engineer", Transactions of the Historic Society of Lancashire and Cheshire 89.
    JHB

    Biographical history of technology > Berry, Henry

  • 16 Cosnier, Hugues

    SUBJECT AREA: Canals, Textiles
    [br]
    b. Angers (?) or Tours (?), France
    d. between July 1629 and March 1630
    [br]
    French engineer.
    [br]
    Cosnier was probably an Angevin as he had property in Tours although he lived in Paris; his father was valet de chambre to King Henri IV. Although he qualified as an engineer, he was primarily a man of ideas. On 23 December 1603 he obtained a grant to establish silkworm breeding, or sericulture, in Poitou by introducing 100,000 mulberry plants, together with 200 oz (5.7 kg) of mulberry seed. He had 2,000 instruction leaflets on silkworm breeding printed, but his project collapsed when the Poitevins refused to co-operate. Cosnier then distributed the plants and seeds to other parts of France. The same year he approached Henri IV with the proposal to build a canal from the Loire to the Seine, partly via the Loing, from Briare to Montargis. On the king's acceptance of his proposal, Cosnier on 11 March 1604 undertook to complete the canal, which necessitated crossing the ridge between the two rivers, over a three-year period for 505,000 livres. The Canal de Briare, as it became known, with thirty-six locks including the flight of seven at Rogny, was almost complete in 1610; however, the death of Henri IV led to its abandonment. Cosnier offered to complete it at his own expense, but his offer was refused. Instead, his accounts were examined and it was found that he had already exceeded his authorized credits by 35,000 livres. In settlement, after some quibbling, he was awarded the two seigneuries of Trousse near Briare. Cosnier then suggested encircling the Paris suburbs with a canal which would not only be navigable but would also provide a water supply for fountains and drains. His proposal was accepted in 1618, but the works were never started. In the 1620s the marquis d'Effiet proposed the completion of the Canal de Briare and Cosnier was invited to resume work. Before anything more could be done Cosnier died, some time between July 1629 and March 1630, and the work was again abandoned. The canal was ultimately completed by Boutheroue in 1642, but the seven locks at Rogny remain a dramatic monument to Cosnier's ability.
    [br]
    Further Reading
    JHB

    Biographical history of technology > Cosnier, Hugues

  • 17 Riquet, Pierre Paul

    SUBJECT AREA: Canals, Civil engineering
    [br]
    b. 29 June 1604 Béziers, Hérault, France
    d. 1 October 1680 buried at Toulouse, France
    [br]
    French canal engineer and constructor of the Canal du Midi.
    [br]
    Pierre Paul Riquet was the son of a wealthy lawyer whose ancestors came from Italy. In his education at the Jesuit College in Béziers he showed obvious natural ability in science and mathematics, but he received no formal engineering training. With his own and his wife's fortunes he was able to purchase a château at Verfeil, near Toulouse. In 1630 he was appointed a collector of the salt tax in Languedoc and in a short time became Lessee General (Fermier Général) of this tax for the whole province. This entailed constant travel through the district, with the result that he became very familiar with this part of the country. He also became involved in military contracting. He acquired a vast fortune out of both activities. At this time he pondered the possibility of building a canal from Toulouse to the Mediterranean beyond Béziers and, after further investigation as to possible water supplies, he wrote to Colbert in Paris on 16 November 1662 advocating the construction of the canal. Although the idea proved acceptable it was not until 27 May 1665 that Riquet was authorized to direct operations, and on 14 October 1666 he was given authority to construct the first part of the canal, from Toulouse to Trebes. Work started on 1 January 1667. By 1669 he had between 7,000 and 8,000 men employed on the work. Unhappily, Riquet died just over six months before the canal was completed, the official opening beingon 15 May 1681.
    Although Riquet's fame rightly rests on the Canal du Midi, probably the greatest work of its time in Europe, he was also consulted about and was responsible for other projects. He built an aqueduct on more than 100 arches to lead water into the grounds of the château of his friend the marquis de Castres. The plans for this work, which involved considerable practical difficulties, were finalized in 1670, and water flowed into the château grounds in 1676. Also in 1676, Riquet was commissioned to lead the waters of the river Ourcq into Paris; he drew up plans, but he was too busy to undertake the construction and on his death the work was shelved until Napoleon's time. He was responsible for the creation of the port of Sète on the Mediterranean at the end of the Canal du Midi. He was also consulted on the supply of water to the Palace of Versailles and on a proposed route which later became the Canal de Bourgogne. Riquet was a very remarkable man: when he started the construction of the canal he was well over 60 years old, an age at which most people are retiring, and lived almost to its completion.
    [br]
    Further Reading
    L.T.C.Rolt, 1973, From Sea to Sea, London: Allen Lane; rev. ed. 1994, Bridgwater: Internet Ltd.
    Jean-Denis Bergasse, 1982–7, Le Canal de Midi, 4 vols, Hérault:—Vol. I: Pierre Paul Riquet et le Canal du Midi dans les arts et la littérature; Vol II: Trois Siècles de
    batellerie et de voyage; Vol. III: Des Siècles d'aventures humaine; Vol. IV: Grands Moments et grands sites.
    JHB

    Biographical history of technology > Riquet, Pierre Paul

  • 18 Williams, Sir Edward Leader

    SUBJECT AREA: Canals, Civil engineering
    [br]
    b. 28 April 1828 Worcester, England
    d. 1 June 1910 Altrincham, Cheshire, England
    [br]
    English civil engineer, designer and first Chief Engineer of the Manchester Ship Canal.
    [br]
    After an apprenticeship with the Severn Navigation, of which his father was Chief Engineer, Williams was engaged as Assistant Engineer on the Great Northern Railway, Resident Engineer at Shoreham Harbour and Engineer to the contractors for the Admiralty Pier at Dover. In 1856 he was appointed Engineer to the River Weaver Trust, and among the improvements he made was the introduction of the Anderton barge lift linking the Weaver and the Trent and Mersey Canal. After rejecting the proposal of a flight of locks he considered that barges might be lifted and lowered by hydraulic means. Various designs were submitted and the final choice fell on one by Edwin Clark that had two troughs counterbalancing each other through pistons. Movement of the troughs was initiated by introducing excess water into the upper trough to lift the lower. The work was carried out by Clark.
    In 1872 Williams became Engineer to the Bridgewater Navigation, enlarging the locks at Runcorn and introducing steam propulsion on the canal. He later examined the possibility of upgrading the Mersey \& Irwell Navigation to a Ship Canal. In 1882 his proposals to the Provisional Committee of the proposed Manchester Ship Canal were accepted. His scheme was to use the Mersey Channel as far as Eastham and then construct a lock canal from there to Manchester. He was appointed Chief Engineer of the undertaking.
    The canal's construction was a major engineering work during which Williams overcame many difficulties. He used the principle of the troughs on the Anderton lift as a guide for the construction of the Barton swing aqueduct, which replaced Brindley's original masonry aqueduct on the Bridgewater Canal. The first sod was cut at Eastham on 11 November 1887 and the lower portion of the canal was used for traffic in September 1891. The canal was opened to sea-borne traffic on 1 January 1894 and was formally opened by Queen Victoria on 21 May 1894. In acknowledgement of his work, a knighthood was conferred on him. He continued as Consulting Engineer until ill health forced his retirement.
    [br]
    Principal Honours and Distinctions
    Knighted. Vice-President, Institution of Civil Engineers 1905–7.
    JHB

    Biographical history of technology > Williams, Sir Edward Leader

  • 19 Gilpin, Thomas

    SUBJECT AREA: Canals
    [br]
    b. 18 March 1728 Chester County, Pennsylvania, USA
    d. 30 April 1778 Winchester, Virginia, USA
    [br]
    American manufacturer.
    [br]
    Thomas Gilpin belonged to a wealthy Quaker family descended from Joseph Gilpin, who had emigrated from England in 1696. He received little formal education and was mainly self-educated in mathematics, surveying and science, in which subjects he was particularly interested. With estates in Delaware and Maryland, he was involved in farming and manufacturing. He moved to Philadelphia in 1769, which further extended his activities. With his fortune he was able to indulge his interest in science, and he was one of the original members of the American Philosophical Society in 1769. He wrote papers on the wheat fly, the seventeen-year locust and the migration of herrings. It was through this Society that he became friendly with Benjamin Franklin, to whom he wrote on 10 October 1769 setting out his proposals for and advocacy of a canal linking the Elk River on Chesapeake Bay with the Delaware River and Bay, thereby cutting off a long haul of several hundred miles for vessels around Cape Charles with a dangerous passage unto the Atlantic Ocean. Gilpin also invented a hydraulic pump that delighted Franklin very much. Gilpin had visited England in 1768 during the formation of his ideas for the Chesapeake \& Delaware Canal, and probably visited the Bridgewater Canal while there. Despite his pressing advocacy the canal had to wait until after his death, but later his son Joshua, a director from 1803 to 1824, saw the canal through many difficulties although he had resigned before the official opening in 1829. At the outbreak of the American War of Independence, in 1777, Gilpin, together with other Quakers, was arrested in Philadelphia owing to suspicions of his loyalty on the grounds that as a Quaker he refused to sign the Oath of Allegiance. He was later exiled to Winchester, Virginia, where he died in April 1778.
    [br]
    Further Reading
    1925, "Memoir of Thomas Gilpin", Pennsylvania Magazine of History and Biography.
    R.D.Gray, 1967, The National Waterway: A History of the Chesapeake and Delaware Canal, 1769–1985, Urbana: Illinois University Press.
    JHB

    Biographical history of technology > Gilpin, Thomas

  • 20 Telford, Thomas

    SUBJECT AREA: Canals, Civil engineering
    [br]
    b. 9 August 1757 Glendinning, Dumfriesshire, Scotland
    d. 2 September 1834 London, England.
    [br]
    Scottish civil engineer.
    [br]
    Telford was the son of a shepherd, who died when the boy was in his first year. Brought up by his mother, Janet Jackson, he attended the parish school at Westerkirk. He was apprenticed to a stonemason in Lochmaben and to another in Langholm. In 1780 he walked from Eskdale to Edinburgh and in 1872 rode to London on a horse that he was to deliver there. He worked for Sir William Chambers as a mason on Somerset House, then on the Eskdale house of Sir James Johnstone. In 1783–4 he worked on the new Commissioner's House and other buildings at Portsmouth dockyard.
    In late 1786 Telford was appointed County Surveyor for Shropshire and moved to Shrewsbury Castle, with work initially on the new infirmary and County Gaol. He designed the church of St Mary Magdalene, Bridgnorth, and also the church at Madley. Telford built his first bridge in 1790–2 at Montford; between 1790 and 1796 he built forty-five road bridges in Shropshire, including Buildwas Bridge. In September 1793 he was appointed general agent, engineer and architect to the Ellesmere Canal, which was to connect the Mersey and Dee rivers with the Severn at Shrewsbury; William Jessop was Principal Engineer. This work included the Pont Cysyllte aqueduct, a 1,000 ft (305 m) long cast-iron trough 127 ft (39 m) above ground level, which entailed an on-site ironworks and took ten years to complete; the aqueduct is still in use today. In 1800 Telford put forward a plan for a new London Bridge with a single cast-iron arch with a span of 600 ft (183 m) but this was not built.
    In 1801 Telford was appointed engineer to the British Fisheries Society "to report on Highland Communications" in Scotland where, over the following eighteen years, 920 miles (1,480 km) of new roads were built, 280 miles (450 km) of the old military roads were realigned and rebuilt, over 1,000 bridges were constructed and much harbour work done, all under Telford's direction. A further 180 miles (290 km) of new roads were also constructed in the Lowlands of Scotland. From 1804 to 1822 he was also engaged on the construction of the Caledonian Canal: 119 miles (191 km) in all, 58 miles (93 km) being sea loch, 38 miles (61 km) being Lochs Lochy, Oich and Ness, 23 miles (37 km) having to be cut.
    In 1808 he was invited by King Gustav IV Adolf of Sweden to assist Count Baltzar von Platen in the survey and construction of a canal between the North Sea and the Baltic. Telford surveyed the 114 mile (183 km) route in six weeks; 53 miles (85 km) of new canal were to be cut. Soon after the plans for the canal were completed, the King of Sweden created him a Knight of the Order of Vasa, an honour that he would have liked to have declined. At one time some 60,000 soldiers and seamen were engaged on the work, Telford supplying supervisors, machinery—including an 8 hp steam dredger from the Donkin works and machinery for two small paddle boats—and ironwork for some of the locks. Under his direction an ironworks was set up at Motala, the foundation of an important Swedish industrial concern which is still flourishing today. The Gotha Canal was opened in September 1832.
    In 1811 Telford was asked to make recommendations for the improvement of the Shrewsbury to Holyhead section of the London-Holyhead road, and in 1815 he was asked to survey the whole route from London for a Parliamentary Committee. Construction of his new road took fifteen years, apart from the bridges at Conway and over the Menai Straits, both suspension bridges by Telford and opened in 1826. The Menai bridge had a span of 579 ft (176 m), the roadway being 153 ft (47 m) above the water level.
    In 1817 Telford was appointed Engineer to the Exchequer Loan Commission, a body set up to make capital loans for deserving projects in the hard times that followed after the peace of Waterloo. In 1820 he became the first President of the Engineers Institute, which gained its Royal Charter in 1828 to become the Institution of Civil Engineers. He was appointed Engineer to the St Katharine's Dock Company during its construction from 1825 to 1828, and was consulted on several early railway projects including the Liverpool and Manchester as well as a number of canal works in the Midlands including the new Harecastle tunnel, 3,000 ft (914 m) long.
    Telford led a largely itinerant life, living in hotels and lodgings, acquiring his own house for the first time in 1821, 24 Abingdon Street, Westminster, which was partly used as a school for young civil engineers. He died there in 1834, after suffering in his later years from the isolation of deafness. He was buried in Westminster Abbey.
    [br]
    Principal Honours and Distinctions
    FRSE 1803. Knight of the Order of Vasa, Sweden 1808. FRS 1827. First President, Engineers Insitute 1820.
    Further Reading
    L.T.C.Rolt, 1979, Thomas Telford, London: Penguin.
    C.Hadfield, 1993, Thomas Telford's Temptation, London: M. \& M.Baldwin.
    IMcN

    Biographical history of technology > Telford, Thomas

См. также в других словарях:

  • Canal d'Orléans — This article is about a canal in France. For the canal in New Orleans, La, see Orleans Canal. Canal d Orléans Canal d Orléans in Chécy, Loiret Department, France …   Wikipedia

  • Canal du Midi — crossing the River Orb in Béziers Specifications Canal length: 240 km (150 mi) Max boat length …   Wikipedia

  • Canal Town — is the title of a 1944 novel by Samuel Hopkins Adams.ynopsisThe novel is set in the 1820s in the town of Palmyra, New York, near Rochester, located on the Erie Canal. The novel opens in 1820, when the construction of the Erie Canal had just begun …   Wikipedia

  • Canal, José de la — • Ecclesiastical historian Catholic Encyclopedia. Kevin Knight. 2006. Canal, José de la     José de la Canal     † …   Catholic encyclopedia

  • Canal of the Pharaohs — The Canal of the Pharaohs also called the Ancient Suez Canal or Necho s Canal is the forerunner of the Suez Canal, constructed in ancient times. It followed a different course than its modern counterpart, by linking the Nile to the Red Sea via… …   Wikipedia

  • Canal de l'Ourcq — …   Wikipedia

  • Canal+ (Spanish satellite broadcasting company) — Canal+ Type Sociedad Limitada Industry Satellite broadcasting Founded 21 July 2003 Headquarters …   Wikipedia

  • Canal Street (Manchester) — Canal Street Postal code: M1 Location: Manchester, England …   Wikipedia

  • Canal 13 (Chile) — Canal 13 Launched August 21, 1959 Owned by Luksic Group (67%), Pontificia Universidad Católica de Chile (33%) Audience share 25.6% (May, 2005 …   Wikipedia

  • canal of Schlemm — shlem n a circular canal lying in the substance of the sclerocorneal junction of the eye and draining the aqueous humor from the anterior chamber into the veins draining the eyeball called also Schlemm s canal, sinus venosus sclerae Schlemm… …   Medical dictionary

  • Midi Canal — ▪ canal, France also called  Languedoc Canal , French  Canal du Midi  or  Canal du Languedoc   historic canal (canals and inland waterways) in the Languedoc region of France, a major link in the inland waterway system from the Bay of Biscay… …   Universalium

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»